Genetic design of biologically inspired receptive fields for neural pattern recognition

نویسندگان

  • Claudio A. Perez
  • C. A. Salinas
  • Pablo A. Estévez
  • P. M. Valenzuela
چکیده

This paper proposes a new method for the design, through simulated evolution, of biologically inspired receptive fields in feedforward neural networks (NNs). The method is intended to enhance pattern recognition performance by creating new neural architectures specifically tuned for a particular pattern recognition problem. It proposes a combined neural architecture composed of two networks in cascade: a feature extraction network (FEN) followed by a neural classifier. The FEN is composed of several layers with receptive fields constructed by additive superposition of excitatory and inhibitory fields. A genetic algorithm (GA) is used to select receptive field parameters to improve classification performance. The parameters are receptive field size, orientation, and bias as well as the number of different receptive fields in each layer. Based on a random initial population where each individual represents a different neural architecture, the GA creates new enhanced individuals. The method is applied to handwritten digit classification and face recognition. In both problems, results show strong dependency between NN classification performance and receptive field architecture. GA selected parameters of the receptive fields produced improvements in the classification performance on the test set up to 90.8% for the problem of handwritten digit classification and up to 84.2% for the face recognition problem. On the same test sets, results were compared advantageously to standard feedforward multilayer perceptron (MLP) NNs where receptive fields are not explicitly defined. The MLP reached a maximum classification performance of 84.9% and 77.5% in both problems, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Inspired Edge Detection using Spiking Neural Networks and Hexagonal Images

Inspired by the structure and behaviour of the human visual system, we extend existing work using spiking neural networks for edge detection with a biologically plausible hexagonal pixel arrangement. Standard digital images are converted into a hexagonal pixel representation before being processed with a spiking neural network with scalable hexagonally shaped receptive fields. The performance i...

متن کامل

Biologically Inspired Object Recognition using Gabor Filters

Recent advancements in the understanding of the computational processes underlying early vision have provided novel opportunities for the creation of biologically inspired vision models. Hubel and Wiesel (1968) empirically demonstrated the existence of receptive fields as a fundamental aspect of early visual processing in mammalian vision systems. Further work demonstrated that these receptive ...

متن کامل

Biologically-Inspired Pattern Recognition For Odor Detection

It is shown that biologically-inspired data aggregation methods result in improved odor discrimination in a gas sensor array. In one typical group of experiments, the correct identification rate achieved by a neural network was improved from 92% without aggregation to 98% with aggregation.

متن کامل

Using Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks for Partially Occluded Object Recognition

Using Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks for Partially Occluded Object Recognition Joseph Lin Chu Artificial neural networks have been widely used for machine learning tasks such as object recognition. Recent developments have made use of biologically inspired architectures, such as the Convolutional Neural Network, and the Deep Belief Network. A the...

متن کامل

Analysis of Feature Maps Selection in Supervised Learning Using Convolutional Neural Networks

Artificial neural networks have been widely used for machine learning tasks such as object recognition. Recent developments have made use of biologically inspired architectures, such as the Convolutional Neural Network. The nature of the Convolutional Neural Network is that each convolutional layer of the network contains a certain number of feature maps or kernels. The number of these used has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2003